

Tecnología innovadora RSS/NMR Comparación con métodos geofísicos convencionales

Las búsquedas geofísicas indirectas (sísmica) para el petróleo y el gas y, sobre todo, la identificación de las trampas son una etapa de exploración necesaria pero insuficiente, ya que solo un tercio de las estructuras identificadas por métodos geofísicos y verificadas por perforación exploratoria resultan ser comercialmente portadoras de petróleo y gas.

La exploración sísmica tradicional es un método geofísico de prospección que permite conocer en profundidad la forma y disposición de las diferentes unidades litológicas. Esto es posible mediante la detección, lectura e interpretación de ondas sísmicas reflejadas del subsuelo, producidas por una fuente de energía artificial instalada en profundidades georreferenciadas.

Esta fuente sísmica suele ser un explosivo compacto de alta energía capaz de generar una onda elástica que se propaga a través del subsuelo reconocible por los sensores (geófonos) instalados en puntos estratégicos en el campo de estudio.

Por lo tanto, el desarrollo e introducción en la práctica de métodos directos de búsqueda de yacimientos de hidrocarburos y otros tipos de minerales para evaluar efectivamente las perspectivas de su desarrollo en la etapa de exploración geofísica son de gran importancia.

La innovadora tecnología "RSS/NMR" o Resonance Spectral Sensing/Nuclear Magnetic Resonance, que se traduce como: Detección Espectral de Resonancia / Resonancia Magnética Nuclear, se refiere a métodos electromagnéticos "directo" de geofísica y se basa en la aplicación del efecto de resonancia. La idea de la tecnología radica en la separación resonante del espectro de la sustancia que necesitamos de una mezcla de espectros de banda ancha de otras sustancias y muchas interferencias de diferente naturaleza. Como resultado, cualquier tipo de mineral en áreas de cualquier complejidad se puede explorar, es decir, buscar de manera rápida y confiable.

La analogía más simple de este proceso para explicar la forma de trabajar es sintonizar un receptor de radio en la estación correcta entre las masas de interferencias de ondas de radio y señales de otras estaciones.

Lo principal en nuestro enfoque del estudio geofísico del interior de la tierra es que no utilizamos la interpretación de datos indirectos, sino que determinamos directamente la existencia o no existencia de la sustancia buscada en el interior de la tierra y luego determinamos las características de su lecho.

La tecnología RSS/NMR se realiza de forma remota (método RSS), así como directamente en el suelo (método NMR). La aplicación de estos métodos permite realizar estudios regionales de territorios de diferente área y complejidad en cualquier punto del mundo, su estudio detallado en cualquier condición climática, independientemente de epidemias, guerras y otros que impidan su ejecución.

Se debe considerar la efectividad de nuestra tecnología RSS/NMR, en comparación con los levantamientos sísmicos 2D/3D. La AMAS (Anomalía Magnética del Atlántico Sur) es una limitante seria para la exploración sísmica 2D/3D en todo el sur de américa latina.

Características comparativas de la tecnología sísmica 3D y RSS/NMR

Clasificación	3D	RSS	NMR
Objeto del estudio	El objetivo principal de la exploración sísmica es encontrar estructuras favorables a la acumulación de petróleo y gas.	Identificación y levantamiento de depósitos en áreas de hasta decenas de miles de kilómetros cuadrados. Verificación y optimización de puntos para perforación de pozos. Evaluar las perspectivas de rehabilitación de pozos.	Estudio de los depósitos identificados para verificar los resultados de RSS y establecer puntos de perforación óptimos en el campo. Evaluación de las perspectivas de recuperación de pozos, es el "Brown field refurbish".
Resultados obtenidos	Contornos de suelo de anomalías, zonas de falla, profundidades y espesores de horizontes de anomalía, mapas estructurales, porosidad esperada de yacimientos, modelos 3D, puntos para perforación de pozos exploratorios.	Contornos de suelo de depósitos, zonas de falla, profundidades y espesores de horizontes de depósitos, presión de gas, horizontes de riesgo, mapas estructurales, modelos 3D, zonas y puntos óptimos para la perforación de pozos productivos, cálculo de reservas.	Contornos de suelo de depósitos, zonas de fallas, profundidades y espesores de horizontes de depósitos, presión de gas, horizontes de riego, mapas estructurales, modelos 3D, puntos óptimos para perforación de pozos productivos, cálculo de reservas.
duración	Desde de 3 meses hasta 4 años	60 días	60 días

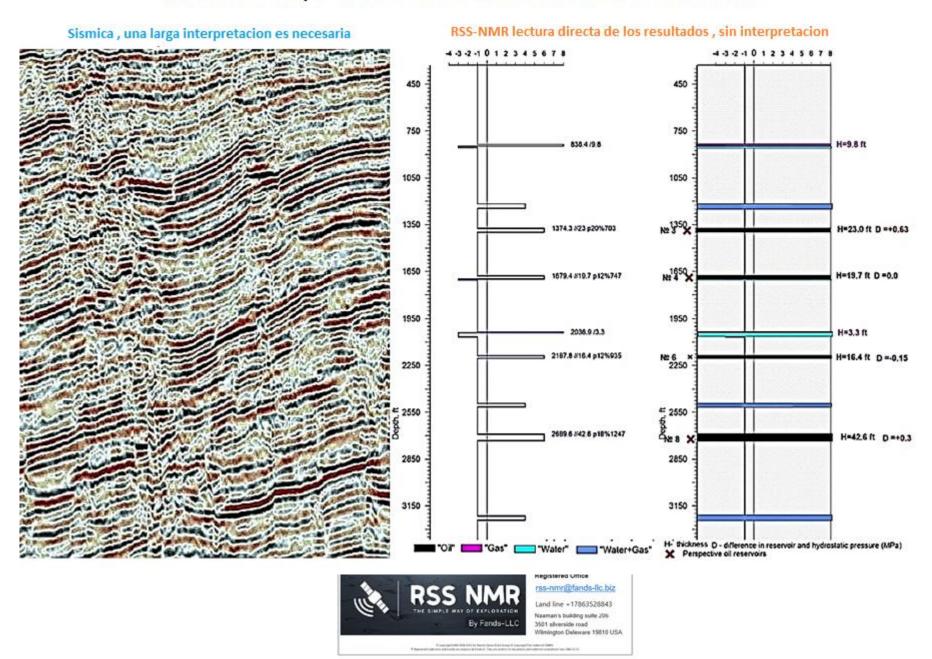
Limitaciones	Funciona solo en rocas sedimentarias. Detecta en su mayoría trampas de domo tradicionales. No funciona en aguas poco profundas y terrenos montañosos. Larga duración de la fase base de estudios e interpretación de datos. Difícil de estudiar en condiciones geográficas, climáticas, sociales, políticas y epidemiológicas difíciles.	Prácticamente sin restricciones. Funciona en rocas sedimentarias y duras. Funciona en aguas profundas offshore (hasta 6 km desde la superficie). Destaca los depósitos de cualquier estructura. Utilizado en cualquier condición geográfica, climática, geológica y epidemiológica.	Prácticamente sin restricciones. Funciona en rocas sedimentarias y duras. Funciona en aguas profundas offshore (hasta 6 km desde la superficie). Destaca los depósitos de cualquier estructura. Utilizado en cualquier condición climática, geológica y epidemiológica.
Medio Ambiente	Una gran carga de vibraciones y la necesidad de cortar árboles y afectar el medio ambiente.	Absolutamente respetuoso con el medio ambiente. Seguro para las personas y el medio ambiente.	Absolutamente respetuoso con el medio ambiente. Seguro para las personas y el medio ambiente.
Efectividad	30% en Green Fields, hasta 50% en exploración de campo adicional.	Más del 90%.	Más del 90%.
Costo	elevado	reducido	reducido

Simbólicamente, la diferencia entre las tecnologías se ilustra en la siguiente figura:

Evolution des technologies en Exploration-Production 1893 Theorie de l'anticlinal 1 période 1880-1930 1900's Forage Rotary 1914 Seismographe Exploid partir des 1924 Log de puits 1º qualités des roches et des fluides affleurements et des 1930's t" puits en "mer" Extension as domaine maritime (> 10m) indices de surfoce 1830 Sismique ponctuelle Imagerie 10 Subsurface 1830's-1840's Géophysique Généralisation de la 1D 2 période 19 30 - 1950 a Exploration encore 1950% Signaturationsphie Corrélations et datations géologiques précisées Sismique et de logging Amelioration des outils « hosardeuse » des bassins 1990's Ordinateur digital (1963) Rift continental (1969) 3 période 1950's-1970's 2D image de subsurface Mellieure commissance structurale Propriétés des roches et fluides de Exploration Diagraphie moderne « semi-collèrée » subsurface 1970's Sismique numérique calibrée 2D migration (1970) Forage directionnel 4hm période 1970's-1980's Rock Eval Concepts "roche mère et formation des HC" Exploration « calibrée » Amélioration de la prédiction 1977 Analyse stratigraphique 1903 Sismique 3D Melleure précision des objectifs à forer 54m période 1980's-1990's Exploration-Production Mellieure définition des zones à potentiel 1965 Système pétroller optimizee" 6*** période 1990 s Simulation 2D at 3D des Prediction des mouvements et de la localisation Exploration-Production bassins et des réservairs des Sulites Attribute stemiques Prediction des fluides et extensions de er nationalisée » Sismique 4D at monitoring réservoirs

Evolution des technologies en Exploration-Production

1990's 1994 1994 1990's 1990's	Theorie de l'articlinal Forage Rotary Seismographe Log de pults 1° pults en "mer" Sismique ponctuelle	1° qualités des roches et des fluides Extension au domaine maritime (> 10m) Imagerie 10 Subsurface	1im période 1880-1930 Explo.à partir des affleurements et des indices de surface
1930's-19 1950's	40's Géophysique Biostratigraphie Sismique et de logging	Généralisation de la 1D Corrélations et datations géologiques précisées Amélioration des outils	2 ^{lm} période 19:30-1950's Exploration encore « hosardeuse » des bassins
1990's	Ordinateur digital (1963) Rift continental (1969) Diagraphie moderne	2D image de subsurface Mellieure commissance structurale Propriétés des roches et fluides de aubsurface	3tm période 1950's-1970's Exploration « seul-colibrée »
1970's	2D migration (1876) Forage directionnel Rock Eval Analyse stratigraphique	Sismique numérique catibrée Concepts "roche mère et formation des HC" approfondis Amélioration de la prédiction	4 ^{les} période 1970's-1980's Exploration « colibrée »
1903 1965	Sismique 3D Système pétroller	Melleure précision des objectifs à forer Mellieure définition des zones à potentiel	5im période 1980's-1990's Exploration-Production optimisée
Sism	Simulation 20 et 30 des ins et des réservairs Attributs xismiques ique 40 et maniforing pp (viv. 2005)	Prediction des trouvements et de la localication des fiuldes Prédiction des fiuldes et extensions de réservoirs	6th période 1990's Exploration Production « rationalisée »

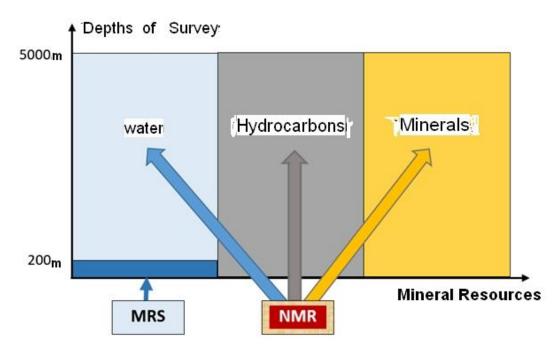

ФУНКЦИОНАЛЬНАЯ СХЕМА ДИСТАНЦИОННОЙ ТЕХНОЛОГИИ ОБНАРУЖЕНИЯ И ОКОНТУРИВАНИЯ МЕСТОРОЖДЕНИЙ ПОЛИМЕТАЛЛОВ И УГЛЕВОДОРОДОВ

Como la RSS-NMR y las sismicas clasicas muestran los resultados de terrenos

Comparación de RSS/NMR con la ERS (European Remote Sensing Satellite)

La teledetección terrestre es un estudio sin contacto con la Tierra, su superficie y su subsuelo, objetos y fenómenos individuales mediante el registro y análisis de su propia radiación electromagnética o reflejada. Los sistemas de teledetección espacial ERS, permiten recibir datos de grandes áreas, que luego pueden usarse para pronosticar territorios, prometiendo la ocurrencia de varios tipos de minerales y agua.

RSS - 2D and 3D surveys ERS - oil prospective zones ERS - terrestrial mineral displays 40.78 TOP 10.3 TELY 1617 TELY 1617 (R-SWR1, G-SWR4, B-SWR8)



Podemos ver una gran diferencia cualitativa en los resultados de los estudios. ERS identifica áreas prometedoras para estudios adicionales; RSS identifica los depósitos y determina sus características específicas y su profundidad de ocurrencia.

Comparación de RSS/NMR con MRS (Magnetic Resonance Sounding)

La tecnología MRS está diseñada para detectar acuíferos y medir sus características. El principio de funcionamiento de las tecnologías MRS y NMR comparadas es el mismo y se basa en el fenómeno de la resonancia magnética nuclear. Sin embargo, MRS requiere antenas muy grandes y una enorme potencia máxima para penetrar de 150 a 200 metros de profundidad. En este caso, solo se detectan los horizontes del agua, mientras que la NMR detecta agua, hidrocarburos y minerales, realizando el estudio a mayores profundidades:

Por lo tanto, la tecnología RSS es un método remoto de topografía de áreas, identificando directamente agua, hidrocarburos y minerales buscados y proporcionando exploración y evaluación en profundidad de las perspectivas de desarrollo.

Conclusiones sobre los resultados del análisis comparativo de tecnologías.

La eficiencia de las tecnologías y métodos geofísicos consiste en la confiabilidad de los resultados del estudio, la rapidez para obtenerlos y el costo.

En todos estos parámetros, la tecnología RSS/NMR supera significativamente cualquiera de los métodos geofísicos discutidos anteriormente y, por lo tanto, aumenta radicalmente la rentabilidad de las empresas que exploran y producen hidrocarburos, agua dulce subterránea y minerales. En estos tiempos de incertidumbre el reacondicionamiento de los campos maduros (Brown Field) es la clave del éxito para una empresa en fase de exploración.

